Opening the Floodgates to T Cells – Biomarkers for the Combination of Bevacizumab and Atezolizumab in RCC

Jeffrey Wallin, Ph.D.
Genentech, Inc.
The goal of CIT approaches is to promote anti-tumor immunity

Inflamed

- Respond favorably to checkpoint inhibition
- TILs
- CD8+ T cells
- PD-L1 expression
- Genomic instability
- Pre-existing immunity

Non-inflamed

- How do you convert these tumors to inflamed tumor?
Is VEGF inhibition synergistic with anti-PD-L1?

PRIMING AND ACTIVATION

CANCER ANTIGEN PRESENTATION

RELEASE OF CANCER CELL ANTIGENS

TRAFFICKING OF T CELLS TO TUMORS

INfiltration of T CELLS INTO TUMORS

RECOGNITION OF CANCER CELLS BY T CELLS

KILLING OF CANCER CELLS

Atezolizumab (anti-PD-L1)

Bevacizumab (anti-VEGF)

- Can Res 2010, 70; 6171
Overview of GP28328 Ph1b Trial Design

- Six arms (A-F), open label study
 - Arms A, B → Bev +/- chemo in solid tumors
- 1° objectives: safety, tolerability, DLT and MTD

Biopsy and blood collection schedule

Flow cytometry, plasma cytokines, Fluidigm, Nanostring, IHC, TCR Sequencing
Efficacy: Tumor burden over time in mRCC patients

- 40% Overall Response Rate (ORR)
 - Historical response rates with atezolizumab and bevacizumab are ~15% and ~9%, respectively
- Combination is well-tolerated
- 6 of 10 patients still on study after 15 mos

Bendell, Jones, Mier, Sznol, McDermott

Investigator-assessed unconfirmed response per RECIST v1.1.
IC, immune cells; IHC 3: ≥ 10% tumor-infiltrating ICs positive for PD-L1; IHC 2: ≥ 5% and < 10% tumor ICs positive for PD-L1; IHC 1: ≥ 1% and < 5% tumor ICs positive for PD-L1; IHC 0: < 1% tumor ICs positive for PD-L1.
Efficacy evaluable patients dosed by April 7, 2014, who had at least 1 scan; data cutoff July 7, 2014.
Approaches to study human tumor immune biology

iCHIP
- High throughput and comprehensive evaluation of tumor and immune genes

TUMOR
- Spatial assessment of CD8 in response to treatment
- Dx grade assays for assessment of target expression

IMAGING
- Allow for evaluation of multiple immune cell subsets, endothelial cells, and tumor cells
- Enables spatial assessment of TILs

BLOOD
- Cytokines/chemokines
- Circulating Immune Cell Subsets
 - Mutational burden
 - TCR sequencing
Increases in CD8\(^+\) T cells are observed with treatments in RCC

Patient 3, Female, 62 years old

- 83\% (5/6) of bev + atezo RCC patients had increases in tumor CD8\(^+\) T cells
- 11\% (1/9) of RCC patients had increased tumor CD8\(^+\) T cells following monotherapy atezo (PCD4989g)
Endothelial and immune marker changes are observed with treatments.

Patient 3, Female, 62 years old

MHC I

Bendell, SCRI
Downregulation of vascular gene signature and upregulation of immune effector gene signatures in the tumor with Bev+Atezo

Vascular gene signature - ANGPT2, CD34, DLL4, EGFL7 and ESM1
CD8 T effector gene signature - CD8A, CD8B, EOMES, GZMA, GZMB, IFNG, and PRF1
Th1 chemokine signature - CXCL10, CXCL11, CXCL13, and CXCL9
NK cell gene signature - GZMB, KLRD1, and SLAMF7
Why are CD8$^+$ TILs increased in the tumor following Bev+Atezo?

Possible explanations:

• CD8$^+$ T cells are proliferating in the tumor

• CD8$^+$ T cells are recruited and/or allowed to infiltrate the tumor

 – Anti-VEGF-induced changes in the vasculature allow CD8$^+$ T cells to invade tumor tissue

 – CD8$^+$ T cells are recruited to the tumor by “stressed/inflamed” endothelial cells after anti-VEGF therapy
Increases in proliferating CD8+ T cells are detected on-treatment

Patient 1

CD8/Ki67

Pre-treatment

Post Bev

Post Bev+Atezo

Patient 5

Patient 6
CD8+ TIL increase does not appear to be due to enhanced proliferation within the tumor.

Greater density of CD8+ T cells post-combination, but ratio of Ki67+ proliferating and Ki67- non-proliferating cells unchanged.
Why are CD8$^+$ TILs increased in the tumor following Bev+Atezo?

Possible explanations:

- CD8$^+$ T cells are proliferating in the tumor

- CD8$^+$ T cells are recruited and/or allowed to infiltrate the tumor

 - *Anti-VEGF-induced changes in the vasculature allow CD8$^+$ T cells to invade tumor tissue*

 - *CD8$^+$ T cells are recruited to the tumor by “stressed/inflamed” endothelial cells after anti-VEGF therapy*
Infiltrating cells are located near unstable vessels on-treatment.

CD8\(^+\) T cells and CD163\(^+\) macrophages are located near immature vessels (\(\alpha\)SMA\(^-\))
Expression of fractalkine (CX3CL1) and its receptor (CX3CR1) are elevated with Bev + Atezo

- CX3CL1 is a potent chemoattractant expressed on the surface of endothelial cells
- CX3CR1 is highly expressed on armed CD8+ T effectors, NK cells, and macrophages
T cell receptor (TCR) sequencing identifies individual T cell clones

10^{14} TCRs
$\sim 5M$ clones

Diversity – # unique clones

Clonality – relative abundance

Public clones – shared clones (disease-specific)

Wang et. al., Cancer Res 2012
Changes in TIL composition after combination signifies an evolving anti-tumor T cell response

This patient had a 5.7-fold increase in intratumoral CD8+ T cells on-treatment
Summary and Conclusions

- Combination of bevacizumab+atezolizumab is active with a 40% ORR and prolonged duration of response.

- Anti-VEGF treatment alone modulates the tumor immune microenvironment via increased Th1 signaling, fractalkine expression and expression of MHC Class I on tumor cells.

- Increased proliferating CD8+ T-cell infiltration post bevacizumab+atezolizumab observed in close proximity to unstable vessels but not stable vessels. This is co-incident with contextual macrophage expression around unstable but not stable vessels.

- The T cell repertoire in the tumor is changed on-treatment with bev alone and bev+atezo, which may provide support for a selective trafficking mechanism. It is also possible that the infiltration is non-biased and there is retention of antigen-specific T cells in the tumor.

- Phase II and III studies are currently ongoing
Acknowledgements

Genevive Hernandez
Konstanty Korski
Hartmut Koeppen
James Ziai
Carlos Bais
Mitch Denker
Vincent Leveque
Bo Liu
Roel Funke
Fabien Gaire
Daniel Waterkamp
Priti Hegde

Ed Cha
Mark Lackner
Lukas Amler
Garret Hampton
Dan Chen

Genentech/Roche investigators and patients
The Cancer-Immunity Cycle

1. Release of cancer cell antigens
2. Cancer antigen presentation
3. Priming and activation
4. Trafficking of T cells to tumors
5. Infiltration of T cells into tumors
6. Recognition of cancer cells by T cells
7. Killing of cancer cells