Clinical, Pathologic and Genomic Profiles of Exceptional Responders to Anti-PD1 Therapy in Renal Cell Carcinoma

Mark W. Ball, Michael H. Johnson, Michael A. Gorin, Maria A. Mendoza Rodriguez, Ming Zhang, Nickolas Papadopoulos, Michael C. Haffner, Hans J. Hammers, Luigi Marchionni, George J. Netto, Charles G. Drake, Mohamad E. Allaf
PD-1 Checkpoint Blockade in RCC

• The efficacy of PD-1/PDL-1 blockade in RCC has been demonstrated in multiple trials.

• Objective response rates range from 20-30%.

• A minority of patients achieves durable response

McDermott 2015
Durable Response

Durable Cancer Regression Off-Treatment and Effective Reinduction Therapy with an Anti-PD-1 Antibody

Evan J. Lipson¹, William H. Sharffman¹,², Charles G. Drake¹,², Ira Wolffner⁶, Janis M. Taube³,⁴, Robert A. Anders⁴, Hailing Xu⁶, Sheng Yao¹,³, Alice Pons¹, Lieping Chen¹,³, Drew M. Pardoll¹, Julie R. Brahmer¹, and Suzanne L. Topalian⁵

Durable, partial response for 3 years → ongoing complete response
Predictors of Response

• Previous studies have correlated response to PD-1 blockade with:
 • Tumor PD-L1 expression (Topalian 2012)
 • Not seen in recent phase III trial (Motzer 2015)
 • Somatic mutation burden (Snyder 2014, Rizvi 2015)
 • DNA mismatch repair defects (Le 2015)
 • Cell-mediated immune transcripts (Choueiri ASCO 2015)

• No studies have examined predictors of durable response.
Study Design

• What predicts long-term, durable response to anti-PD1 therapy?

• Design: Study the two extreme phenotypes
 • Patients with complete-response (CR) by RECIST or a near-complete response (defined as a PET complete response and 10% or less stable residual disease) at 24 months “Exceptional responders” – (n=4)
 • Primary refractory (n=3)

• Clinical, pathologic characteristics
 • Tumor expression of PDL1
 • Infiltrating CD8+ lymphocytes

• Whole exome sequencing
 • Number of mutations
 • Number of putative of neoantigens

• RNA expression (Nanostring)
Changes in target lesions diameter in RCC patients treated with anti-PD-1 therapy.
Clinical Characteristics

<table>
<thead>
<tr>
<th>ECOG PS</th>
<th>Primary tumor stage</th>
<th>Time to Metastasis (m)</th>
<th>Site of metastasis</th>
<th>Prior Systemic Therapy</th>
<th># Prior Therapies</th>
<th>Survival from initiation of PD1 Therapy (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceptional Responders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>pT3bNxMx</td>
<td>27.0</td>
<td>Lung</td>
<td>HDAC inhibitor.</td>
<td>2</td>
</tr>
<tr>
<td>Median Exceptional Responder</td>
<td>1</td>
<td></td>
<td>14.4</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Median Primary refractory</td>
<td>1</td>
<td></td>
<td>7.8</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>P value</td>
<td>0.7</td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>pT2bNxMx</td>
<td>7.8</td>
<td>Lung</td>
<td>IL-2</td>
<td>1</td>
</tr>
</tbody>
</table>
IHC Analysis

PDL1 (+)

<table>
<thead>
<tr>
<th>Exceptional responders</th>
<th>Primary refractory</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor PD-L1 Expression, n(%)</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Absent</td>
<td>1 (25)</td>
<td>1 (33)</td>
</tr>
<tr>
<td>Present</td>
<td>3 (75)</td>
<td>2 (67)</td>
</tr>
<tr>
<td>Immune cell infiltrate PD-L1 Expression (n=6), n(%)</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Absent</td>
<td>2 (67)</td>
<td>2 (67)</td>
</tr>
<tr>
<td>Present</td>
<td>1 (33)</td>
<td>1 (33)</td>
</tr>
</tbody>
</table>

PDL1 (-)
IHC Analysis

<table>
<thead>
<tr>
<th></th>
<th>Exceptional responders</th>
<th>Primary refractory</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD8+ Intratumor lymphocytes/hpf (mean) (n=6)</td>
<td>126.7</td>
<td>28.8</td>
<td>0.2</td>
</tr>
<tr>
<td>CD8+ stromal lymphocytes/hpf (mean) (n=6)</td>
<td>211.8</td>
<td>70.6</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Somatic Mutational Density

Exceptional Responders: 67
Primary Refractory: 35

TCGA (all ccRCC): 50
TCGA (M1): 48
Complete responders had a higher proportion of mutated chromatin remodeling genes \textit{PBRM1} (75\% vs 33\%) and \textit{SETD2} (75\% vs 0).
Neoantigen Prediction

Neoantigens:
21-amino-acid polypeptides centered on mutated residues were scanned and processed with netMHC. < 500 nm affinity considered putative neoantigens.

Mutation-associated neoantigens (MANA):
Neoantigens with strong binding (<50 nm) with complementary wild type with weak or no binding.
RNA Expression

Nanostring RNA Expression Cancer Immune Panel: 770 genes
31 genes differentiated ER and Primary Refractory

Extreme Responders:
- Acute inflammatory: IL-6, CXCL5, CXCL2
- T cell activation: IL2RA

Primary Refractory
- T cell inhibition: TNFRSF14, CCL24

All p < 0.05, FDR < 0.1
Summary

• Patients with long-term CR to anti-PD1 therapy have trends toward:
 • Increased mutational density
 • Increased mutation-associated neoantigens
 • Increased CD8 infiltrate
 • Increased expression of proinflammatory cytokines

• Future directions:
 • Multi-institutional collaborations to examine exceptional response
 • *In vitro* confirmation of neoantigen-MHC interaction
 • Validation of immune signatures in prospective trial
Acknowledgements

• Urology:
 • Mohamad Allaf
 • Michael Gorin
 • Michael Johnson
 • Phil Pierorazio

• Medical Oncology:
 • Chuck Drake
 • Hans Hammers

• Ludwig Institute:
 • Bert Vogelstein
 • Ken Kinzler
 • Luiz Diaz
 • Ming Zhang
 • Nickolas Papadopoulos

• Bioinformatics:
 • Luigi Marchionni

• Pathology:
 • George Netto
 • Maria Rodriguez
 • Michael Haffner