Renal Cell Carcinoma: Status of Medical and Surgical Therapy

Ronald M. Bukowski
Emeritus Physician
Cleveland Clinic Foundation
Metastatic Renal Cell Carcinoma: Evolution of Current Therapeutic Approaches

1970

1980

1990

2000

2010

Immunotherapy

Immune Function, Immune Dysfunction

Molecular Biology RCC

Prognostic Factors, Histologic Subtypes

Targeted Therapeutic Approaches

DNA Sequencing – RCC Genome; Possible Subsets Defined
RCC Clinical Trial with Targeted Agents: Recent Developments

• Initial Phase – 2000 to 2010
 Defined the efficacy of Targeted Therapy

• Second Phase – 2010 to present
 Compared treatments with regard to efficacy and tolerability

• Next Phase – define new/novel treatments
 New targets/medications
 Improve patient outcomes
 Integration “genomic approaches”
Renal Cell Carcinoma Clinical Trials 2000-2010: Defined Efficacy

<table>
<thead>
<tr>
<th>Agent (s)</th>
<th>Publication</th>
<th>Trial Description</th>
<th>Patient Nos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab</td>
<td>2003</td>
<td>Phase 2 randomized</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2007 (vs. IFN)</td>
<td>Phase 3 randomized</td>
<td>649</td>
</tr>
<tr>
<td></td>
<td>2008 (vs. IFN)</td>
<td>Phase 3 randomized</td>
<td>732</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>2005/2006</td>
<td>Phase 2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2007 (vs. IFN)</td>
<td>Phase 3 randomized</td>
<td>750</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>2006 (vs. PLC*)</td>
<td>Phase 3 randomized</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2009 (vs. IFN)</td>
<td>Phase 2 randomized</td>
<td>189</td>
</tr>
<tr>
<td>Temsirolimus</td>
<td>2007 (± IFN)</td>
<td>Phase 3 randomized</td>
<td>626</td>
</tr>
<tr>
<td>Everolimus</td>
<td>2009 (vs. PLC)</td>
<td>Phase 3 randomized</td>
<td>-</td>
</tr>
<tr>
<td>Pazopanib</td>
<td>2010</td>
<td>Phase 2 Randomized Discontinuation</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>2010 (vs. PLC)</td>
<td>Phase 3 randomized</td>
<td>290</td>
</tr>
</tbody>
</table>

Treatment naive patients – 2791; treatment refractory patients – 1813; total patients – 4604

*PLC: placebo
Renal Cell Carcinoma Clinical Trials 2010 – Present: Define “Optimal Therapy” & Tolerability

<table>
<thead>
<tr>
<th>Agent (s)</th>
<th>Publication Date (Comparator Arm)</th>
<th>Trial Description</th>
<th>Patient Nos.</th>
<th>Naive</th>
<th>Prior Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab + IFNα</td>
<td>2012 (vs. TEMSR + Bev)</td>
<td>Phase 3 randomized</td>
<td>791</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axitinib</td>
<td>2012 (vs. sorafenib)</td>
<td>Phase 3 randomized</td>
<td>-</td>
<td>723</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013 (vs. sorafenib)</td>
<td>Phase 3 randomized</td>
<td>288</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>Phase 2 randomized</td>
<td>213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temsirolimus</td>
<td>2012 (vs. sorafenib)</td>
<td>Phase 3 randomized</td>
<td>-</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Tivozanib</td>
<td>2012 (vs. sorafenib)</td>
<td>Phase 3 randomized</td>
<td>362</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>Pazopanib</td>
<td>2012 (vs. sunitinib)</td>
<td>Phase 3 Randomized</td>
<td>1110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*PLC : placebo

Treatment naive patients – 2551; treatment refractory patients – 1290; total patients – 3841
<table>
<thead>
<tr>
<th>Setting</th>
<th>Category 1</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st-Line Therapy</td>
<td>Good or intermediate risk*</td>
<td>Sunitinib Bevacizumab + IFN Pazopanib</td>
</tr>
<tr>
<td></td>
<td>Poor risk*</td>
<td>Temsirolimus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sunitinib</td>
</tr>
<tr>
<td>2nd-Line Therapy</td>
<td>Prior cytokines</td>
<td>Sorafenib Pazopanib Axitinib</td>
</tr>
<tr>
<td></td>
<td>Prior VEGFR inhibitors</td>
<td>Everolimus Axitinib</td>
</tr>
<tr>
<td></td>
<td>Prior mTOR inhibitor</td>
<td>Clinical Trials</td>
</tr>
</tbody>
</table>

* MSKCC or Heng Criteria
Current Approaches RCC Therapy

1. VEGFR inhibitors:
 - Diverse spectrum clinical, biochemical & toxic effects
 - Efficacy may correlate with potency of VEGFR inhibition
 - Efficacy & plasma levels may be related
 - Dosing based on target plasma level is a consideration
 - Hypertension may be a clinical surrogate for plasma drug levels
 - Axitinib and tivozanib may be “cleaner TKIs” & have a better TI

2. mTOR inhibitors:
 - May be inferior to anti-VEGFR TKI’s in treatment naïve patients
 - Most clear cell RCC tumors do not express activated mTOR kinase
 - Current use is in TKI refractory patients or non-clear cell RCC
 - Identification of RCC that are mTOR dependent would be of interest
Results of New mRCC Treatment Paradigm

• Improved clinical benefit:
 - Increased frequency of tumor regression
 - Delayed disease progression
 - Survival: appears improved, confounding effect sequential therapy recognized, eg, TIVO-1 trial

• Quality of life indicators – improved
• Multiple treatment alternatives available
• Cost versus benefits – appear acceptable
• Are we utilizing the correct surrogate endpoints to demonstrate clinical benefit?
 - OS: “gold standard”
 - PFS: do improvements always translate into OS benefit?
 - PRO: a work in progress
Improving Outcomes in mRCC Patients

- Continued development of novel targeted agents
- VEGFR TKIs with improved therapeutic indices: ?tivozanib
- Dose Intensification-based on biomarkers: ?hypertension
- Combination therapy ± immunotherapy
- Back to biology:
 1) Consider concept of clonal tumor evolution
 2) VEGFR TKI resistance – novel approaches
 3) Treatment based on tumor biology
Next Generation RCC Clinical Trials

• Have we reached a “therapeutic plateau” with TKI and mTOR inhibitors?

• New and novel targets:

 Immune checkpoint regulators: PD-1 Mab
 Vaccines: peptide based, dendritic cells
 cMet inhibitors: carbozatinib
 FGFR inhibitors: divotinib
 ?Combinations

 Immunotherapy based
 Multikinase inhibitors

• Trials in pre-defined patient subsets – refine current patient selection

 Clinically defined groups: risk group, histology,
 Biomarker defined groups:, genetically defined subsets, IL-6, LDH

• Continued focus on clinical trials with optimal design
Phase 3 Trial BMS-936558 vs. Everolimus in Patients with mRCC who have received prior Anti-Angiogenic Therapy

Patients Eligible:
• RCC with clear cell component
• Must have received one or two prior anti-angiogenic Rx’s: sunitinib, sorafenib, pazopanib, axitinib, tivozanib and bevacizumab
• Prior cytokine Rx, cytotoxic Rx, or vaccine therapy allowed
• Must have received ≤ three prior treatment regimens for mRCC

Study endpoints:
• Primary: overall survival
• Secondary: PFS, ORR
Changes in Clonal Composition over Time & Changes in Clonal-Mutation Prevalence

VHL Genotype in Primary & Metastatic CCRCC

- 10 paired specimens from patients with metastatic clear cell CA utilized
 - Paraffin embedded specimens
 - Genomic DNA from microdissected specimens
 - Paired tumor/metastatic tissue (#10) & normal adjacent tissue (#6) analyzed
 - 3 exons of the VHL gene sequenced (PCR-based amplification)
 - Results independently validated (Transgenomic)

- In 4/10 (40%) patients, the VHL genotype differed between the primary & metastatic lesion
 - VHL mutation in the primary & metastasis was also identical
 - In normal adjacent tissue VHL was always WT

Intratumor Heterogeneity and Evolution Revealed by Multiregion Sequencing

- Intratumor heterogeneity examined
- 4 primary RCC from patients with mRCC examined
- Performed exome sequencing & chromosome analysis, IMH, mutational functional analysis, profiling mRNA
- Results:
 - 63 to 69% somatic mutations not detectable across tumor regions
 - Intratumor heterogeneity observed in mTOR kinase mutation
- Tumor heterogeneity may result in tumor adaptation & therapy failure
Clonal Evolution and Therapy for mRCC: Implications

• Clinical documentation of response variability:
 a) Metastases
 b) Primary tumor

• Suggests clinical relevance of tumor subclones and mutations:
 a) Intratumoral heterogeneity of mutations recognized
 b) Even among early “driver” mutations subclonality may occur
 c) Suggests that multiple assessments of tumors will be required

• Clonal heterogeneity constitutes a molecular phenotype:
 a) Assessment may guide therapy
 b) Genomic heterogeneity may prove to be prognostic

• Monitoring and profiling of clonal evolution in RCC may be necessary:
 a) Characterization of clonal heterogeneity in tumors
 b) Monitoring of plasma DNA may be less invasive
 c) Development of a tumor “barcode”
Emergence of Treatment Resistance in mRCC: Major Challenge

• Clonal tumor evolution in response to the selective pressure of therapy
• Determining resistance mechanisms:
 a) Role of clonal evolution
 b) Identification of mutations that drive resistance
 c) Identification of therapy that can bypass target responsible for resistance
• Approaches to resistance:
 a) Target alternate pathways, e.g., FGFR, immune check points, cMet, etc.
 b) Development of new agents active versus mutant protein
 c) Use of combinations to inhibit bypass pathway
 d) Will combinations delay emergence of resistance
• Large-scale DNA sequencing of the RCC genome will provide insights into the clonality of tumor cells and possibly define new targets and therapeutic approaches.
PBRM1 (polybromo 1):
1) Gene encoding an SW1/SNF chromatin-remodeling complex
2) Truncating mutations described in 41% CCRCC
3) Low grade tumors noted

BAP1 (BRCA 1 associated protein-1)
1) Mutations in 15% CCRCC
2) High grade tumors reported
Treatment Approach Based on Molecular Profile

<table>
<thead>
<tr>
<th>Setting</th>
<th>Tumor Characteristic</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment Naive</td>
<td>VHL -/-, BAP-1 WT, PD-L1 -</td>
<td>VEGF Inhibitor</td>
</tr>
<tr>
<td></td>
<td>mTOR activation</td>
<td>mTOR Inhibitor</td>
</tr>
<tr>
<td></td>
<td>PDL1+, ± other</td>
<td>Anti-PD1 Therapy</td>
</tr>
<tr>
<td></td>
<td>VHL-/-, BAP-1 mutant, PDL1-</td>
<td>VEGF Inhibitor + “Other Agent”</td>
</tr>
<tr>
<td></td>
<td>C-Met +, ± other</td>
<td>Met inhibitor</td>
</tr>
<tr>
<td></td>
<td>Other mutation: PBRM1 ± Other</td>
<td>?Specific Inhibitor ?Observation</td>
</tr>
</tbody>
</table>

Adapted: Atkins M: KCA Chicago Symposium, 2012
Surgery in Renal Cell Carcinoma

- Localized disease:
 - Small renal masses
 - Non-surgical ablative techniques
 - Observation
- Locally advanced/metastatic disease:
 - Cytoreductive nephrectomy
 - Neoadjuvant therapy
- Adjuvant therapy
Cytoreductive Nephrectomy: 2013

• Remains the paradigm of choice in the current targeted therapy:
 - Trials from the cytokine era
 - Retrospective analysis
• Patient selection is a major issue
• Prospective trials are in progress, may clarify the issue
Current Trials: Cytoreductive Nephrectomy mRCC

mRCC – Primary Tumor in situ

Carmena Trial (n = 1134)

Arm B: Sunitinib

Arm A: Nephrectomy then Sunitinib

Surtime Trial (n = 458)

Arm B: Sunitinib followed by Nephrectomy

Carmena Endpoints:
Primary Endpoint: OS (non-Inferiority design)
Secondary Endpoints: ORR, PFS, CBR
Morbidity, compliance

Surtime Endpoints:
Primary Endpoint: PFS
Secondary Endpoints: OS, ORR, Morbidity, Early PD
Meta-analysis Adjuvant Therapy: RCC

- 10 randomized controlled studies with 2609 patients
- Interventions: cytokines, vaccines, biochemotherapy, hormone therapy
- Endpoints: overall survival, disease free survival
- No benefit for any intervention identified

Scherr et al, BMC Cancer 2012
Current Generation RCC Adjuvant Trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>Interventions</th>
<th>No. Patients</th>
<th>Patients Eligible</th>
<th>Final Analysis Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARISER</td>
<td>Rencarex vs PLC</td>
<td>864</td>
<td>CCRCC</td>
<td>Oct, 2012: negative</td>
</tr>
<tr>
<td>S-TRAC</td>
<td>Sunitinib vs. PLC</td>
<td>720</td>
<td>Predom. CCRCC</td>
<td>June, 2017</td>
</tr>
<tr>
<td>SORCE</td>
<td>Sorafenib (1 or 3 yrs.) vs. PLC</td>
<td>1656</td>
<td>RCC: CCRCC or non-CCRCC</td>
<td>Accrual completed 2013</td>
</tr>
<tr>
<td>ASSURE</td>
<td>Sorafenib, sunitinib, PLC</td>
<td>1923</td>
<td>RCC: CCRCC or non-CCRCC</td>
<td>April, 2016</td>
</tr>
<tr>
<td>PROTECT</td>
<td>Pazopanib vs. PLC</td>
<td>1500</td>
<td>CCRCC or Predom. CCRCC</td>
<td>April, 2017</td>
</tr>
<tr>
<td>EVEREST</td>
<td>Everolimus vs. PLC</td>
<td>1170</td>
<td>RCC: CCRCC or non-CCRCC</td>
<td>Oct, 2021</td>
</tr>
<tr>
<td>ATLAS</td>
<td>Axitinib vs. PLC</td>
<td>592</td>
<td>Predom. CCRCC</td>
<td>May, 2019</td>
</tr>
</tbody>
</table>

Patients to be investigated: 8425
PLC – placebo; CCRCC – clear cell RCC; non-CCRCC - non-clear cell RCC
Summary

• Current treatment paradigm with the various TKI’s represents a significant advance in therapy for CCmRCC
• Continued development of following necessary:
 - Therapy vs. novel targets
 - Integration of immune therapy
 - Personalized approaches: use of data from RCC genome analysis
• Significant surgical advances past 10 years
• Evaluation of the role of post-surgical adjuvant therapy now underway
• Next major advances in therapy for RCC:
 - Emphasis on “personalized (precision) approaches”
 - Understanding tumor resistance
 - Development of combinations
 - Define a role for adjuvant therapy
Élysée Palace to Put Wine Up for Bid
By STEVEN ERLANGER
Published: April 30, 2013
PARIS — The dreaded phantasm of economic austerity has finally knocked its bony fingers on the door of the Élysée Palace, which announced on Tuesday that it would auction off 1,200 bottles of its finest wines, renew its cellar with “more modest” vintages and return the surplus to the state budget.
Non-inferiority Clinical Trials

- Recent examples:
 - COMPARZ: Sunitinib vs. Pazopanib
 - Ongoing: Carmena Trial

- A non-inferiority trial tries to show a new intervention is not ‘inferior’ to a standard one, or, more precisely, is ‘not unacceptably worse’ than the intervention used as the control.

- This design does not demonstrate equivalence

- Non-inferiority is different from equivalence which attempts to demonstrate two treatments are the same or ‘not unacceptably different’ from each other. In a non-inferiority trial, by contrast, the aim is to show that a new therapy is not unacceptably worse than an older or standard one.

- Will this trial design using an open label approach involving surgery in one of the arms be informative?

 Possibly